KDS 11 50 15 : 2021

깊은기초 설계기준 (일반설계법)

2021년 5월 12일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건 설공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 구조물기초 설계기준, 도로교 설계기준, 건축구조기준을 중심으로 철도 설계기준(노반편), 항만및어항 설계기준의 깊은기초 설계에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 연혁은 다음과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
구조물기초 설계기준	 합리적인 설계를 위하여 본구조물 기초설계기준 을 기초지반의 성질 및 상부구조의 조건을 고려 하여 경제적이고 통일성 있는 쳬계가 이뤄지도록 기준 제정 	제정 (1971.12)
구조물기초 설계기준	 외국자료의 분석과 기 개정된 각종 시방서 시설 기준 및 제규정 등과의 상호 연관성을 검토하고, 미비점을 충분히 반영하여 개정. 	개정 (1986.11)
구조물기초 설계기준	 그간의 지반공학 분야의 기술발전을 반영하고, 관련기준의 개정에 따른 내용 조정 등 수정하고 국제표준단위인 미터법과 SI단위로 통일 개정. 	개정 (2002.12)
구조물기초 설계기준	• 구조물기초 설계기준 개정	개정 (2008.11)
구조물기초 설계기준	 토목, 건축공사 등의 건설구조물 기초 설계를 국 가의 설계기준형식에 부합시키고, 신기술, 신공법 등의 시대적 변화를 적용시키며 설계자의 창의적 설계를 유도할 수 있도록 개정. 	개정 (2014.2)
구조물기초 설계기준	 도심지 지반침하 현상의 지속적 발생으로 국민불 안이 증대하고 있으나, 다소 미흡한 지반침하와 관련된 조사 및 설계관련 하여 공동 및 싱크홀을 조사하도록 철도설계기준 개정사항(2015)을 반영 하여 개정. 	
도로교 설계기준	• SI단위계 사용, 신기술 및 신공법 반영 개정.	개정 (2005.2)
도로교 설계기준	• 신자재 추가 및 재료 허용응력 등 부분 개정	부분개정 (2008.9)

건설기준	주요내용	제정 또는 개정 (년.월)
도로교 설계기준	 - 그동안 제개정된 각종 규칙, 기준 및 최근 연구 성과 등을 검토 반영, 심미적 디자인 추구, 철근 콘크리트 기둥의 연성도 내진설계법 부록 도입 함. 	개정 (2010.9)
건축구조 설계기준	• 건축구조 설계기준 제정	제정 (2005.4)
건축구조 설계기준	• 재검토기한 신설 등 개정	개정 (2009.8)
건축구조기준	• 부분 개정	개정 (2009.12)
건축구조기준	• 재검토기한의 연도 수정 등 개정	개정 (2013.12)
건축구조기준	• 특정한 지형조건의 기본지상적설하중 등 개정	개정 (2015.10)
건축구조기준	• 성능설계법 도입 및 돌발상황에 의한 하중 추가 등 기준 전반에 대한 최근 연구결과 및 개선된 공법 반영	개정 (2016.5)
KDS 11 50 15 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)
KDS 11 50 15 : 2016	• 한국산업표준과 건설기준 부합화에 따라 수정함	수정 (2018.7)
KDS 11 50 15 : 2021	 · 건설기준코드의 통일성을 위해 작성지침과 부합 화, 부주면마찰력 내용 정비, 재하시험 수량 등 내용 정비함 	개정 (2021.5)

제 정 : 2016년 6월 30일	개 정 : 2021년 5월 12일
심 의 : 중앙건설기술심의위원회	자문검토 : 국가건설기준센터 건설기준위원회
소관부서 : 국토교통부 기술혁신과	
관련단체 : 한국지반공학회	작성기관 : 한국지반공학회

1.	일반사항
	1.1 목적
	1.2 적용범위
	1.3 참고 기준
	1.4 용어의 정의
	1.5 기호의 정의
	1.6 검토사항
2.	조사 및 계획
3.	재료1
4	설계
4.	실계
	4.1 말뚝기초
	4.2. 케이슨기초

1. 일반사항

1.1 목적

- (1) 이 기준의 목적은 지지력, 침하 등 깊은기초에서 발생 가능한 파괴에 대하여 설계 안 정성을 만족시키는데 필요한 최소한의 설계 요구조건을 규정하는 데 있다.
- 1.2 적용범위
- (1) 이 기준은 기초가 지지하는 구조물의 저면으로부터 구조물을 지지하는 지지층까지의 깊이가 기초의 최소폭에 비하여 비교적 크고 깊은 기초형식인 말뚝기초, 케이슨기초 등의 일반설계(허용응력설계)에 적용한다.

1.3 참고 기준

1.3.1 관련 법규

• 내용 없음

1.3.2 관련 기준

• KDS 11 10 05 지반설계 일반사항 • KDS 11 10 10 지반조사

1.4 용어의 정의

- 극한지지력: 구조물을 지지할 수 있는 지반의 최대 저항력
- 기성 콘크리트말뚝: 공장에서 제작된 콘크리트말뚝
- 단기 허용압축응력 : 가설구조물에 작용하는 하중과 일시적으로 작용하는 일시하중 (단기하중)에 대한 허용압축응력
- 말뚝기초: 말뚝을 지중에 삽입하여 하중을 지반 속 깊은 곳의 지지층으로 전달하는 깊
 은기초의 대표적인 기초형식
- 매입말뚝:지반에 굴착공을 천공한 후 시멘트풀을 주입하고 기성말뚝을 삽입한 다음 필요에 따라 말뚝에 타격을 가하여 지지지반에 말뚝을 안착시키는 공법
- 무리말뚝: 두 개 이상의 말뚝을 인접 시공하여 하나의 기초를 구성하는 말뚝의 설치형태
- 부주면마찰력: 말뚝 침하량보다 큰 지반 침하가 발생하는 구간에서 말뚝 주면에 발생
 하는 하향의 마찰력
- 선단지지력: 깊은 기초의 선단부 지반의 전단저항력에 의해 발현되는 지지력
- 세장비 : 말뚝의 지름 대비 길이의 비를 의미하며 말뚝재료의 허용하중 산정에 반영
- 장기 허용압축응력 : 영구구조물에 상시 작용하는 상시하중(장기하중)에 대한 허용압축
 응력
- 주면마찰력: 말뚝의 표면과 지반과의 마찰력에 의해 발현되는 저항력
- 케이슨기초: 지상에서 제작하거나 지반을 굴착하고 원위치에서 제작한 콘크리트통에

KDS 11 00 00 지반설계기준

속채움을 하는 깊은기초 형식

- 타입말뚝:기성말뚝을 해머로 타격하여 지지층까지 관입시키는 말뚝 시공방법
- 허용지지력: 구조물의 중요성, 설계지반정수의 정확도, 흙의 특성을 고려하여 지반의 극한지지력을 적정의 안전율로 나눈 값
- 현장타설 콘크리트말뚝: 지반에 천공하고 콘크리트를 타설하여 완성하는 말뚝

1.5 기호의 정의

• 내용 없음

1.6 검토사항

- (1) 기초의 지지력은 작용하중에 대해 구조물별로 정해진 안전율을 확보하여야 한다.
- (2) 기초의 변위는 상부구조물에 유해한 영향을 주지 않아야 하며, 축방향 및 횡방향 변 위에 대해서도 검토하여야 한다.
- (3) 기초의 설계는 안정성 외에 경제성, 시공성, 환경영향 등을 검토하여야 한다.
- (4) 기초의 설계는 그 시공방법(타입공법, 매입공법, 현장타설공법)을 고려하여 검토하여 야 한다.

2. 조사 및 계획

(1) 깊은기초 설계를 위한 조사는 KDS 11 10 10 을 따른다.

3. 재료

• 내용 없음

4. 설계

4.1 말뚝기초

(1) 이 기준은 각종 토목구조물과 건축구조물에 사용되는 말뚝기초의 설계에 적용되며,
 이 기준의 1.6을 검토하여 결정하여야 한다.

4.1.1 말뚝의 축방향 지지력과 변위

4.1.1.1 말뚝기초의 축방향 허용지지력과 허용변위

- (1) 말뚝기초의 축방향 허용지지력은 말뚝본체의 허용압축하중과 지반의 허용지지력 중
 작은 값으로 한다.
- (2) 말뚝기초의 축방향 허용변위는 상부 구조물의 허용변위량 이내로 한다.

4.1.1.2 말뚝본체의 허용압축하중

(1) 강말뚝

KDS 11 00 00 지반설계기준

- 강말뚝 본체의 허용압축하중은 강재의 허용압축응력에 본체의 유효단면적을 곱한 값에 세장비(말뚝 지름에 대한 길이의 비) 및 말뚝이음에 의한 지지하중 감소를 고려하여 결정한다.
- ② 강말뚝 본체의 유효단면적은 구조물 사용기간 중의 부식을 공제한 값으로 하되,
 부식을 공제할 때에는 육상말뚝과 해상말뚝으로 구분하여 고려한다.
- ③ 지하수에 의해 부식이 우려되는 경우에는 강재 부식 방지공을 검토하고, 이 조건
 을 고려하여 강말뚝 본체의 허용압축하중을 결정한다.
- (2) 기성 콘크리트말뚝
 - RC(Reinforced Concrete)말뚝 본체의 허용압축하중은 콘크리트의 허용압축응력에 콘크리트의 단면적을 곱한 값에 세장비 및 말뚝이음에 의한 지지하중 감소를 고 려하여 결정한다.
 - ② PC(Prestressed Concrete)말뚝 및 PHC(Pretensioned spun High strength Concrete)말뚝 본체의 허용압축하중은 콘크리트의 허용압축응력에 콘크리트의 단 면적을 곱한 값에 프리스트레싱의 영향을 고려하고, 세장비 및 말뚝이음에 의한 지지하중 감소를 고려하여 결정한다.
 - ③ 지하수에 의해 부식이 우려되는 경우에는 부식 방지공을 검토하여야 하며, 이 조 건을 고려하여 말뚝 본체의 허용압축하중을 결정한다.
- (3) 현장타설 콘크리트말뚝
 - 현장타설 콘크리트말뚝 본체의 허용압축하중은 콘크리트와 보강재로 구분하여 허 용압축하중을 각각 산정한 다음, 이 두 값을 합한 값에 세장비에 의한 지지하중 감소를 고려하여 결정한다.
 - ② 콘크리트의 허용압축하중은 콘크리트의 허용압축응력에 콘크리트의 단면적을 곱한 값으로 한다.
 - ③ 보강재의 허용압축하중은 보강재의 허용압축응력에 보강재의 단면적을 곱한 값으 로 한다.
 - ④ 지하수에 의해 부식이 우려되는 경우에는 부식 방지공을 고려하여 말뚝 본체의 허 용압축하중을 결정한다.
- (4) 기타 종류의 말뚝
 - 합성말뚝, 복합말뚝, 마이크로파일 등의 본체 허용압축하중은 해당 재료에 대해 필 요한 구조계산을 실시하여 결정한다.

4.1.1.3 지반의 축방향 허용압축지지력

- (1) 외말뚝 조건에서 지반의 축방향 허용압축지지력은 축방향 극한압축지지력을 소정의 안전율로 나눈 값으로 한다.
- (2) 안전율은 축방향 극한압축지지력을 산정하는 방법의 신뢰도에 따라 적용한다.
- (3) 말뚝의 축방향 압축지지력은 다음과 같이 결정한다.

① 구조물의 중요도가 높거나 대규모 공사에서는 시험시공말뚝을 설치하여 압축재하

시험으로부터 지반의 축방향 허용압축지지력을 확인하며, 하중전이특성을 고려한 말뚝의 하중지지거동을 파악하여 허용압축지지력을 평가하는 데 이용한다.

- ② 공사 규모가 작거나 제반 여건상 시험시공말뚝 설치와 압축재하시험이 곤란한 경 우에는 지반조사와 토질시험 결과를 이용한 정역학적 지지력공식을 이용하거나, 표준관입시험, 정적관입시험, 공내재하시험 등과 같은 원위치시험 결과를 이용한 경험식에 의하여 축방향 극한압축지지력을 계산할 수 있다.
- ③ 경험식에 의한 축방향 압축지지력 산정방법은 신뢰도가 낮기 때문에 공사 초기에 실제 말뚝을 대상으로 압축재하시험을 실시하여 축방향 허용압축지지력을 확인하 여야 한다.
- (4) 항타공법으로 말뚝을 시공하는 경우에는 파동이론분석을 실시하여 항타장비 선정, 항 타시공 관입성 및 지반의 축방향 극한압축지지력 등을 검토하되, 시험시공말뚝 설치 시 동적거동측정을 실시하여 이를 확인한다.
- (5) 말뚝의 지지력은 시공의 영향이 크므로 본말뚝 시공 전에 시험시공말뚝을 설치하고 그 결과를 검토하여 설계심도, 말뚝길이, 시공방법 등의 적정성을 확인하여 결정한다.
- (6) 암반에 근입된 대구경 현장타설말뚝에서 선단 소켓부가 인위적으로 거칠게 시공된 경 우에는 굴착공벽의 거칠기를 평가하고 이를 고려하여 주면마찰력을 산정할 수 있다.

4.1.1.4 재하시험에 의한 축방향 허용압축지지력 결정

- (1) 말뚝기초의 압축재하시험은 고정하중을 적재하거나 지반앵커의 인발저항력 또는 반력 말뚝의 마찰력을 이용한 압축 정재하시험, 말뚝본체에 미리 설치된 가압잭(또는 가압 셀)을 이용한 양방향재하시험, 동적하중을 재하하는 동재하시험 방법 등이 있으며 다 음 사항을 고려하여 실시한다.
 - 말뚝의 압축지지력은 지반조건에 따라 말뚝을 시공한 후 경과한 시간에 따라 변화 하므로 이에 대한 확인이 필요한 경우 동일한 말뚝에 대하여 시공 후 일정한 시간 이 경과한 조건에서 압축재하시험을 실시한다.
 - ② 동재하시험은 실시 기술자의 자질에 따라 그 신뢰도가 영향을 받으므로 이러한 문 제를 해결할 수 있도록 계획되어야 하며, 필요한 경우 동일한 말뚝에 대해 수행된 정재하시험 결과와 비교 평가하는 등 동재하시험 결과의 신뢰도를 확인하는 절차 를 거치도록 한다.
- (2) 재하시험에 의한 허용압축지지력은 항복하중의 1/2 및 극한하중의 1/3 중 작은 값으로 하고, 재하시험을 하지 않는 경우에는 지지력 산정식에 의해 구해지는 극한지지력의 1/3 중에서 가장 작은 값으로 한다.
- (3)(2)항에 의한 안전율 적용은 비경제적인 경우도 있으므로 지반조건, 시공의 정밀도, 말 뚝거동의 특성 및 말뚝재하시험 수량 등을 고려하여 적절한 폭으로 안전율을 낮출 수 있으며, 이 경우에도 극한지지력에 대하여 2보다 낮은 안전율은 적용하지 않는다.

4.1.1.5 항타공식에 의한 축방향 허용압축지지력의 결정

- (1) 항타공식을 사용한 압축지지력 추정은 사용 해머의 효율에 크게 영향을 받으므로 동 재하시험으로 해머의 효율을 주기적으로 실측한 값을 반영한다.
- (2) 항타공식 계산결과는 항타시의 말뚝의 압축지지력이므로 시간경과효과를 추가로 고려 한다.
- (3) 항타공식에 의한 압축지지력 추정 방식은 간편하지만 신뢰도가 낮으므로 동재하시험 으로 얻은 실측 해머효율과 시간경과효과를 고려하는 경우에도 항타공식 계산 결과는 시공관리 목적으로만 사용한다.

4.1.1.6 무리말뚝의 축방향 압축지지력

(1) 무리말뚝의 축방향 압축지지력은 외말뚝의 축방향 압축지지력에 말뚝 및 지반조건에 따라 적합한 무리말뚝 효과를 고려하여 산정하며, 이를 위하여 탄성해석, 탄소성해석 등에 의한 무리말뚝해석을 실시할 수 있다.

4.1.1.7 말뚝의 부주면마찰력

- (1) 말뚝의 부주면마찰력은 말뚝과 지반의 상대적인 침하거동에 따라 발생하는 하향력으로서 말뚝기초의 지지력과 침하에 영향을 미치며, 다음과 같은 경우에 고려해야 한다.
 ① 기초지반에 점토, 실트 또는 유기질토와 같은 압축성 지반이 분포하는 경우
 ② 말뚝기초와 인접하여 쌓기가 예상되거나, 최근에 쌓기가 실시된 경우
 ③ 기초지반의 지하수위가 저하되는 경우
 ④ 느슨한 사질토에 액상화가 예상되는 경우
- (2) 부주면마찰력의 크기는 중립면의 위치, 침하지반의 특성, 말뚝재료의 특성을 고려하여 산정한다.
- (3) 무리말뚝에 대해서는 무리말뚝 효과를 고려한 부주면마찰력을 적용할 수 있다.
- (4) 부주면마찰력이 발생하는 지반조건에서는 선단지지력의 크기, 주면마찰력의 크기 및 분포를 판단할 수 있는 하중전이시험이 포함된 압축재하시험을 실시하여 축방향 허용 압축지지력을 결정할 수 있다.
- (5) 부주면마찰력이 큰 경우에는 부주면마찰력 감소방법을 적용할 수 있다.
- (6) 액상화에 의해 발생된 말뚝 부주면마찰력은 다른 하중조합에 포함하여 고려해야 하 며, 액상화로 인한 말뚝의 부주면마찰력은 압밀침하에 의한 말뚝 부주면마찰력과 조 합하지 않는다.
- (7) 일시적으로 작용하는 하중(지진하중, 풍하중, 빙하중, 충돌하중, 제동하중 등)으로 인 해 말뚝 부주면마찰력이 감소되는 것을 말뚝기초 설계에 고려한다면, 이들 하중과 동 일한 하중을 말뚝 부주면마찰력에서 감소시켜야 한다.
- (8) 말뚝의 부주면마찰력과 활하중 또는 일시적으로 작용하는 하중은 동시에 조합하여 고 려하지 않는다.

4.1.1.8 말뚝의 축방향 허용인발저항력

- (1) 외말뚝의 허용인발저항력은 지반의 축방향 허용인발저항력에 말뚝의 무게를 더한 값
 과 말뚝본체의 허용인발하중 중 작은 값으로 한다.
- (2) 지반의 축방향 허용인발저항력은 인발재하시험을 실시하여 결정한다.
- (3) 인발재하시험 결과를 얻을 수 없는 경우에는 압축재하시험 결과로부터 얻어진 극한압 축주면마찰력으로부터 허용인발저항력을 추정할 수 있다.
- (4) 무리말뚝의 허용인발저항력에 대해서는 무리말뚝의 영향을 고려한다.

4.1.1.9 말뚝기초의 침하

- (1) 침하에 의한 구조물의 안정성을 판정할 때에는 외말뚝의 침하량, 무리말뚝의 침하량,
 부주면마찰력에 의한 외말뚝의 침하량, 부주면마찰력에 의한 무리말뚝의 침하량 및
 부등침하량 등을 고려하여야 한다.
- (2) 허용침하량은 상부구조물의 구조형식, 사용재료, 용도, 중요성 및 침하의 시간적 특성 등에 의해 정한다.
- (3) 외말뚝의 침하량은 압축 정재하시험을 실시하여 판정하는 것이 가장 바람직하며, 압 축 정재하시험 결과를 얻을 수 없는 경우에는 침하량 산정 공식이나 해석적 기법을 이용하여 추정한다.

4.1.2 말뚝의 횡방향 허용지지력

4.1.2.1 말뚝의 횡방향 지지력

(1) 말뚝의 횡방향 지지력은 말뚝에 발생하는 휨응력이 말뚝재료의 허용휨응력 이내가 되는 값이며, 말뚝머리의 횡방향 변위량이 상부구조에서 정해지는 허용변위량을 넘어서 지 않는 조건을 만족시키는 가장 큰 값으로 한다.

4.1.2.2 외말뚝

- (1) 외말뚝의 횡방향 허용지지력은 횡방향재하시험을 실시하여 결정한다.
- (2) 횡방향재하시험을 실시할 수 없는 경우에는 탄성보 방법 및 극한 평형법과 같은 해석 적 방법 또는 프레셔미터 결과를 이용한 방법으로 횡방향 허용지지력을 추정한다.
- (3) 말뚝의 횡방향재하시험을 실시하더라도 실제 구조물의 하중조건과 다른 경우에는 시 험결과와 실제 하중조건을 검토하여 적합한 방법(자료에 의한 경험적 방법)으로 해석 한다.
- (4) 경사말뚝과 연직말뚝으로 이루어진 구조물 기초에 작용하는 수평력은 모두 경사말뚝 에 의해서 지지되는 것으로 할 수 있으며, 이 경우 경사말뚝에 작용하는 수평력은 각 경사말뚝의 축방향 지지력에 의해서만 저항하는 것으로 설계할 수 있다.

<u>4.1.2.3</u> 무리말뚝

KDS 11 00 00 지반설계기준

- (1) 무리말뚝의 횡방향 허용지지력은 말뚝중심 간격에 따른 영향을 고려한다.
- (2) 무리말뚝 효과에 대해서는 무리말뚝의 횡방향재하시험을 실시하여 확인한다.
- (3) 무리말뚝의 횡방향재하시험을 실시할 수 없는 경우에는 해석적 방법으로 추정한다.

4.1.2.4 횡방향 허용지지력 저감

(1) 주기적으로나 장기적으로 횡방향 하중을 받는 조건에서의 횡방향 허용지지력은 정적 인 하중조건으로 결정된 횡방향 허용지지력에 횡방향 지반반력계수 등을 감소시켜 결 정한다.

4.1.2.5 횡방향 지반반력계수

(1) 말뚝기초의 설계에 이용되는 횡방향 지반반력계수는 말뚝의 횡방향재하시험을 통한 하중-변위량 곡선에서 역산하여 구하며, 지반조사 및 토질시험 결과를 이용하여 추정 할 수 있다.

4.1.3 말뚝의 스프링정수

4.1.3.1 말뚝의 축방향 스프링정수

 (1) 외말뚝의 축방향 스프링정수는 압축재하시험을 통한 하중-침하량 곡선으로부터 결정 하며, 기존의 압축재하시험에 기초한 추정식, 토질시험 및 현장시험의 결과를 이용하 여 추정할 수 있다.

4.1.3.2 말뚝의 축직각방향 스프링정수

 (1) 외말뚝의 축직각방향 스프링정수는 횡방향 지반반력계수를 이용하여 탄성지반 위의 보이론을 기초로 산정한다.

4.1.4 말뚝재료의 허용응력

4.1.4.1 나무말뚝

(1) 나무말뚝의 허용압축응력은 소나무, 낙엽송, 미송의 경우 5 MPa, 기타 수종의 경우는 상시 습윤상태에서의 허용압축응력과 5 MPa 중 작은 값을 택하며, 허용압축하중은 나무말뚝의 최소단면에 대해 산정한다.

4.1.4.2 기성콘크리트말뚝

- (1) 기성콘크리트말뚝의 장기 허용압축응력은 콘크리트 설계기준강도의 최대 1/4까지를 적용할 수 있으며, 단기 허용압축응력은 장기 허용압축응력의 1.5배로 한다.
- (2) 콘크리트의 설계기준강도는 35 MPa 이상으로 하고 허용하중은 말뚝의 최소단면으로 결정한다.

4.1.4.3 현장타설 콘크리트말뚝

- (1) 현장타설 콘크리트말뚝의 장기 허용압축응력은 시공 시의 상황에 따라 다음과 같이 정한다.
 - 말뚝본체의 전부 또는 일부의 콘크리트가 물 또는 흙탕물 중에 타설될 경우는 콘 크리트 설계기준강도의 20% 이하
 - ② 말뚝본체 콘크리트 타설을 위한 굴착구멍에 물 또는 흙탕물이 없는 상태에서 콘크 리트가 타설될 경우 또는 수중타설콘크리트에 대한 조치가 있는 경우는 콘크리트 설계기준강도의 25% 또는 8.5 MPa 이하

4.1.4.4 강말뚝

- (1) 강말뚝의 장기 허용압축응력은 일반적으로 부식부분을 제외한 단면에 대해 재료의 항 복응력과 국부좌굴응력을 고려하여 결정한다.
- (2) 강말뚝의 부식은 말뚝이 설치되는 지역조건 및 환경조건에 따라 결정한다.
- (3) 단기 허용압축응력은 장기 허용압축응력의 1.5배로 한다.

4.1.5 말뚝기초 설계

4.1.5.1 설계 시 고려사항

- (1) 말뚝에 작용하는 압축, 인장, 전단, 휨응력이 모두 허용응력 범위 안에 있어야 한다.
- (2) 말뚝과 기초 푸팅의 연결부, 말뚝의 이음부 등은 확실하게 시공할 수 있도록 설계한다.
- (3) 말뚝의 부식, 풍화, 화학적 침해 등에 대하여 적합한 대책을 강구한다.
- (4) 침식, 세굴 또는 인접지반의 굴착, 지하수 변동 등에 대한 검토와 대책을 수립한다.
- (5) 말뚝을 소요 지지층까지 관입시킬 수 있는 공법을 선정한다.
- (6) 시공 시 발생할 수 있는 소음, 진동 등은 환경기준을 만족하여야 한다.
- (7) 지반의 액상화 가능성에 대하여 검토한다.
- (8) 말뚝종류 선정, 시공장비 선택, 시공법 선정, 지지층 선정, 시멘트풀 보강 여부, 무리 말뚝 시공으로 인한 말뚝 솟아오름 가능성 등에 대하여 검토한다.

4.1.5.2 말뚝간격과 말뚝배열

- (1) 말뚝의 배열은 연직하중 작용점에 대하여 가능한 한 대칭을 이루며 각 말뚝의 하중 분담률이 큰 차이가 나지 않도록 한다.
- (2) 말뚝중심 간격은 최소한 말뚝지름의 2.5배 이상, 기초측면과 말뚝중심 간의 거리는 최 소 말뚝지름의 1.25배 이상으로 한다.

4.1.5.3 말뚝기초의 반력

(1) 말뚝기초의 연직하중은 말뚝에 의해서만 지지되는 것으로 간주하며 기초 푸팅의 지지 효과는 무시한다. 다만, 기초 푸팅의 지지효과에 대하여 충분히 신뢰할 수 있는 경우 에는 이를 고려한다.

- (2) 말뚝기초의 횡방향 하중은 말뚝에 의해서 지지되는 것으로 하되, 다만 기초의 깊이가 깊고 뒤채움이 잘 다져져서 횡방향 하중을 분담할 수 있다고 판단될 때에는 기초 측 면의 횡방향 지지력을 고려할 수 있다.
- (3) 기초에 큰 횡방향 하중이 작용할 때에는 경사말뚝을 배치하여 횡방향 하중을 분담하 게 할 수 있다.

4.1.5.4 말뚝기초의 설계절차

- (1) 말뚝기초의 설계는 다음의 절차를 거쳐 수행한다.
 - ① 예비설계
 - ② 검증시험(proof test)
 - ③ 예비설계의 보완
- (2) 검증시험이란 해당공사에서 말뚝의 시공방법 설정, 말뚝지지력의 평가, 말뚝의 길이 결정, 말뚝의 하중지지거동의 확인 등을 위하여 실시하는 시험을 말한다.
- (3) 설계단계에서 시험시공말뚝을 이용한 시험이 곤란할 경우에는 시공초기에 설계확인 및 본시공 관리기준의 설정을 위하여 재하시험을 계획한다.

4.1.5.5 말뚝재하시험

- (1) 말뚝재하시험으로는 압축재하시험, 인발재하시험, 횡방향재하시험 등이 있으며, 압축 재하시험은 정재하시험을 원칙으로 하되 시험목적, 공사의 규모와 중요도, 실시수량, 현장여건 등 실시조건을 고려하여 동재하시험을 선택적으로 적용할 수 있다.
- (2) 말뚝재하시험은 아래의 사항들을 고려하여 목적에 맞도록 계획한다.
 - ① 관련시험규정
 - ② 지지력
 - ③ 변위량
 - ④ 건전도
 - ⑤ 시공방법과 장비의 적합성
 - ⑥ 시간경과에 따른 말뚝지지력 변화
 - ⑦ 부주면마찰력
 - ⑧ 하중전이 특성
 - ⑨ 시험횟수와 방법
 - 10 시험실시 시기
 - 11 시험 및 결과분석 요원의 신뢰도
- (3) 압축재하시험을 동재하시험방법으로 적용할 경우 시공장비의 성능 확인, 장비의 적합 성 판정, 지반조건 확인, 말뚝의 건전도 판정, 지지력 확인 등을 목적으로 실시하여야 하며, 4.1.1.4(1) ① 및 ②를 고려하여 말뚝지지력의 시간경과효과 및 시험품질을 검증

할 수 있다.

- (4) 압축재하시험의 최소 실시수량은 지반조건에 큰 변화가 없는 경우 전체 말뚝 수량의 1% 이상(말뚝이 100개 미만인 경우에도 최소 1개)을 실시하되, 시설물별 기준에서 별 도의 실시수량을 정하고 있는 경우 해당 기준을 따른다.
- (5) 지형 및 지반조건, 시공장비, 말뚝종류 등 제반 시공조건이 변경될 때는 시험횟수를 추가하도록 시방서에 명시하여야 하며, 구조물의 종류와 특성, 중요도 등을 고려하여 발주처와 협의하여 실시수량을 별도로 정할 수 있다.

4.1.5.6 특수한 조건에 있는 말뚝기초의 설계

- (1) 다음에 나타난 바와 같이 특수한 조건에 있는 말뚝기초를 설계할 때는 지반의 성질,
 하중 조건, 말뚝기초 전체의 안전성 등에 대해 종합적으로 검토하여야 한다.
 - ① 확대기초 근입부의 연직저항 또는 횡저항을 고려한 말뚝기초
 - ② 지반면 위에 돌출된 말뚝본체에 횡하중이 작용되는 말뚝기초
 - ③ 동일한 확대기초에 길이가 현저히 다른 말뚝이 있는 말뚝기초
 - ④ 비탈면 위에 설치되는 말뚝기초
 - ⑤ 횡방향 변위량을 특별히 제한하지 않는 말뚝기초
 - ⑥ 세굴을 고려하여야 하는 말뚝기초
 - ⑦ 단일 현장타설말뚝 기초
 - ⑧ 단층파쇄대에 설치되는 말뚝기초
 - ⑨ 연약지반이 매우 깊은 곳에 설치되는 말뚝기초
 - Ⅲ 저진동 및 저소음 공법으로 설치되는 매입말뚝 기초

4.1.5.7 말뚝과 확대기초의 결합부

(1) 말뚝과 확대기초의 결합방식은 강결합과 힌지결합 등이 있으며, 구조물의 특성에 따 라 각각 규정된 방법으로 선정하되 결합부에 생기는 모든 응력들에 대해 안전하도록 설계하여야 한다.

4.2. 케이슨기초

4.2.1 적용범위

- (1) 이 기준은 케이슨기초의 설계에 적용한다.
- (2) 케이슨기초는 상부구조물의 하중과 토압 및 수압뿐만 아니라 시공 중에 받게 되는 모든 하중조건과 유속에 대하여 안전하도록 설계한다.

4.2.2 지반의 허용지지력

4.2.2.1 케이슨 기초지반의 허용연직지지력

(1) 케이슨 기초지반의 허용연직지지력은 지반조사 및 시험결과를 이용하여 정역학적 공 식에 의해 구하거나, 시추조사 결과와 평판재하시험 결과를 반영하고 기초 폭에 의한 크기효과도 고려하여 결정한다.

4.2.2.2 케이슨기초 저면 지반의 허용연직지지력

(1) 케이슨기초 저면 지반의 허용연직지지력은 KDS 24 14 50 (4.5.2(4))의 관련 기준에 따 른다.

4.2.2.3 케이슨기초 전면 지반의 허용수평지지력

(1) 케이슨기초 전면 지반의 허용수평지지력은 KDS 24 14 50 (4.5.2(4))의 관련 기준에 따 른다.

4.2.3 지반반력 및 침하량

4.2.3.1 일반사항

- (1) 지반반력은 케이슨기초를 강체로 하여 산출한다.
- (2) 지반변위량의 계산은 지반조사나 토질시험의 결과를 검토하여 이루어져야 한다. 지반 변위량의 계산 시 사질토의 경우는 탄성변위량을 구하고, 점성토의 경우는 탄성변위 량과 압밀침하량을 구하여야 한다.

4.2.3.2 고려사항

- (1) 케이슨 기초지반의 연직지반반력은 케이슨을 통하여 지반에 전달되는 모든 연직하중을 케이슨의 저면적으로 나눈 값으로 한다.
- (2) 케이슨의 주면마찰력은 일반적으로 고려하지 않는다. 그러나 주면마찰력이 분명하게 발생할 것으로 판단될 때는 그 영향을 고려한다.
- (3) 연직하중에 의한 케이슨 상단의 총 침하량은 케이슨 본체의 탄성변위량과 케이슨 기 초지반의 침하량을 합한 값으로 한다.

4.2.3.3 탄성변위량

(1) 기초에 작용하는 하중에 의한 지반반력 및 탄성변위량은 지반탄성계수나 지반반력계 수를 사용하여 산정한다.

4.2.3.4 압밀침하량

- (1) 압밀침하량은 기초 바닥면 아래에 압밀을 일으킬 수 있는 점성토층이 존재하는 경우 에 산출한다.
- (2) 압밀침하량은 기초에 작용하는 하중에 의한 지반 내의 유효수직응력의 증가분에 대해 서 선행압밀응력의 크기를 고려하여 구한다.

- (3) 압밀침하량의 계산에 있어서 깊이 증가에 따른 유효수직응력의 증가분 감소와 지반 압축성의 변화를 고려하기 위하여 전체 점성토층을 다수의 얇은 층으로 분할(일반적 으로 1,500 mm~3,000 mm두께의 층으로 분할함)하며, 전체 점성토층의 압밀침하량은 분 할한 각 층에 대하여 산정한 압밀침하량을 모두 합한 것이다.
- (4) 이외에 압밀침하량은 유한요소해석 등의 적절한 수치해석적 방법을 통해 산정할 수 있다.

집필위원

성 명	소 속	성 명	소 속
강인규	㈜브니엘컨설턴트	서승환	한국건설기술연구원
김성렬	서울대학교	여규권	삼부토건㈜
김홍연	삼부토건㈜	이원제	㈜에스텍컨설팅그룹
백승철	안동대학교	정문경	한국건설기술연구원

자문위원

성 명	소 속	성 명	소 속
조천환	삼성물산	정상원	명성항타㈜

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이영호	한국건설기술연구원	김대상	한국철도기술연구원
구재동	한국건설기술연구원	김동민	㈜한국종합기술
김기현	한국건설기술연구원	김범주	동국대학교
김나은	한국건설기술연구원	김운형	㈜다산컨설턴트
김태송	한국건설기술연구원	남문석	한국도로공사
김희석	한국건설기술연구원	박이근	㈜지오알앤디
류상훈	한국건설기술연구원	박종호	평화지오텍(주)
원훈일	한국건설기술연구원	오정호	한국교통대학교
이승환	한국건설기술연구원	이규환	건양대학교
이용수	한국건설기술연구원	정충기	서울대학교
주영경	한국건설기술연구원	최용규	경성대학교
최봉혁	한국건설기술연구원	최창호	한국건설기술연구원
허원호	한국건설기술연구원	한상재	㈜지구환경전문가그룹

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
권순철	sk 건설	이양규	대림대학교
김동규	한국수자원공사	이종섭	고려대학교
김사한	LH	이충원	행정안전부
박정권	LH		

국토교통부

성 명	소 속	성 명	소 속
유병수	기술혁신과	양성모	기술혁신과
백세영	기술혁신과		

(분야별 가나다순)

KDS 11 50 15 : 2021 깊은기초 설계기준(일반설계법)

2021년 5월 12일 개정

- 소관부서 국토교통부 기술혁신과
- 관련단체 한국지반공학회 05836 서울특별시 송파구 법원로9길 26, C동 701호(문정동, 에이치비즈니스파크) Tel:02-3474-4428 E-mail:kgssmfe@hanmail.net http://www.kgshome.org
- 작성기관 한국지반공학회 05836 서울특별시 송파구 법원로9길 26, C동 701호(문정동, 에이치비즈니스파크) Tel:02-3474-4428 E-mail:kgssmfe@hanmail.net http://www.kgshome.org

국가건설기준센터 10223 경기도 고양시 일산서구 고양대로 283(대화동) Tel:031-910-0444 E-mail:kcsc@kict.re.kr http://www.kcsc.re.kr